7. Output
Terminal output

p r o g r a m I S O _ 1 9 9 0 5 _ 1 w32 version 00.11
———————————— at 06:47:51 on 19-JUL-2024
jackup leg penetration assessment during preload according to ISO 19905-1 (2016)
(c) S.Kay Consultant, Leiderdorp, The Netherlands.
Please read the ISO_19905_1 Users Manual [ref SKA/MAN/001]
and the ISO_19905_1 FAQ File [ref SKA/FAQ/001].

Q23-AS-PWD_SOFF_CPT002_LB_HAKURYU10

out_sp_pen_sub: < — BEGIN
——————————————————————-
load spread factor #= 1; load spread factor = 4.00
(#rows QV_FMODE summary results= 1)
——————————————————————-
from to from to thickness
z_tip z_tip D D T Qv_fmode
[m] [m] [m] [m] [m] [-]
——————————————————————-
0.100 2.00 0.100 2.00 1.90 GSS
——————————————————————-
from to from to thickness
z_tip z_tip D D T Qv_fmode
[m] [m] [m] [m] [m] [-]
——————————————————————-

iso_19905_1: nlines_errors : 0
iso_19905_1: nlines_warnings: 4

WARNING. gmdata: soil layer # 2; PHI < 20 degrees [ISO 19905-1 Table A.9.3-3].
WARNING. spfdat: spudcan volume V_SPUDCAN=822 m^3 is outside typical range [30 – 500].
WARNING. spfdat: NUMSP_BH = 1 [flat-bottomed spudcan].
WARNING. spfdat: maximum spudcan width SP_B_MAX=2.00 m is outside typical range [3 – 20].

z_tip_penetration [m]: 2.00
out_sp_pen_sub: END — >

input file: “JOB.I01”
output file: “JOB.O01”
iso_19905_1: normal program end

Output file contents

p r o g r a m I S O _ 1 9 9 0 5 _ 1 w32 version 00.11
———————————— at 06:47:51 on 19-JUL-2024
jackup leg penetration assessment during preload according to ISO 19905-1 (2016)
(c) S.Kay Consultant, Leiderdorp, The Netherlands.
Please read the ISO_19905_1 Users Manual [ref SKA/MAN/001]
and the ISO_19905_1 FAQ File [ref SKA/FAQ/001].

pidata:

gmdata:

spfdat:

ssidat:

resdat:

s__out:

spudcan_mat_X_sub: sp_H sp_B
> [m] [m]
2.00 0.00
0.00 785.
spudcan_mat_X_sub: END — >

D_B_eq_sub: < — BEGIN
D [m]: 0.100
> B_eq [m]: 2.00
D_B_eq_sub: END — >

sp_beta_fun: < — BEGIN
sp_beta [rad]: 3.14
> sp_beta/deg [deg]: 180.
sp_beta_fun: END — >

gamma_sub_av [kN/m^3]: 6.00
A [m^2]: 3.14
H_cav [m]: 0.100
V_spud [m^3]: 0.00
V_D [m^3]: 0.100E-02
W_BF = gamma_sub_av [ A (D – H_cav) – (V_spud – V_D ) ]
> W_BF [kN]: 0.6000000E-02
W_BF_fun: END — >

Qv_Dpt_sub: < — BEGIN
< D [m]: 0.100
< B_eq [m]: 2.00

Q_ub_sub: < — BEGIN
< D [m]: 0.100
< D_pt [m]: 0.100
< B_pt [m]: 2.00

Qv_GSS_fun: < — BEGIN
< D [m]: 0.100
< B_eq [m]: 2.00

phi_av_fun: < — BEGIN
< z1 [m]: 0.100
phi_av [rad]: 0.280
> phi_av/deg [deg]: 16.0
phi_av_fun : END — >

is_D_clay [t/f]: F
gamma_sub_av [kN/m^3]: 7.32
phi_rad_av [rad]: 0.280
phi_rad_av/deg [deg]: 16.0
N_gamma [-]: 1.92
N_q [-]: 7.69
d_gamma [-]: 1.00
d_q [-]: 1.02
p0 [kPa]: 0.600
gamma_sub_av*D_gamma*N_gamma*pi*B_eq*B_eq*B_eq/8
[kN]: 44.2
p0*d_q*N_q*pi*B_eq*B_eq/4 [kN]: 14.7
Qv_GSS = gamma_sub_av*D_gamma*N_gamma*pi*B_eq*B_eq*B_eq/8 + p0*d_q*N_q*pi*B_eq*B_eq/4
> Qv_GSS [kN]: 58.92811
Qv_GSS_fun: END — >

phi_lay_deg1 [deg]: 20.0
phi_lay_deg2 [deg]: 20.0
> Q_ub [kN]: 58.92811
> Qv_fmode_pt :GSS
Q_ub_sub: END — >

Rs_pt_fun: < — BEGIN
< D [m]: 0.100
< B_pt [m]: 2.00
Rs_pt [kN]: 0.000000
Rs_pt_fun: END — >

dW_pt_fun: < — BEGIN
< D [m]: 0.100
< B_pt [m]: 2.00
dW_pt = A_pt * T_pt * gamma_sub_av [kN]: 0.000000
dW_pt_fun: END — >

Q_ub_sub: < — BEGIN
< D [m]: 0.100
< D_pt [m]: 0.200
< B_pt [m]: 2.05

Qv_GSS_fun: < — BEGIN
< D [m]: 0.200
< B_eq [m]: 2.05

phi_av_fun: < — BEGIN
< z1 [m]: 0.200
phi_av [rad]: 0.262
> phi_av/deg [deg]: 15.0
phi_av_fun : END — >

is_D_clay [t/f]: F
gamma_sub_av [kN/m^3]: 7.65
phi_rad_av [rad]: 0.262
phi_rad_av/deg [deg]: 15.0
N_gamma [-]: 1.80
N_q [-]: 7.20
d_gamma [-]: 1.00
d_q [-]: 1.03
p0 [kPa]: 1.20
gamma_sub_av*D_gamma*N_gamma*pi*B_eq*B_eq*B_eq/8
[kN]: 46.6
p0*d_q*N_q*pi*B_eq*B_eq/4 [kN]: 29.3
Qv_GSS = gamma_sub_av*D_gamma*N_gamma*pi*B_eq*B_eq*B_eq/8 + p0*d_q*N_q*pi*B_eq*B_eq/4
> Qv_GSS [kN]: 75.91997
Qv_GSS_fun: END — >

phi_lay_deg1 [deg]: 20.0
phi_lay_deg2 [deg]: 15.0
> Q_ub [kN]: 75.91997
> Qv_fmode_pt :GSS
Q_ub_sub: END — >

Rs_pt_fun: < — BEGIN
< D [m]: 0.100
< B_pt [m]: 2.05
Rs_pt [kN]: 0.000000
Rs_pt_fun: END — >

dW_pt_fun: < — BEGIN
< D [m]: 0.100
< B_pt [m]: 2.05
dW_pt = A_pt * T_pt * gamma_sub_av [kN]: 1.980736
dW_pt_fun: END — >

D D_pt B_pt T_pt Q_ub Rs_pt dW_pt lay_D_pt sum_W_pt sum_Rs_pt Qv_D . Qv_fmode
[m] [m] [m] [m] [kN] [kN] [kN] [-] [kN] [kN] [kN]
0.100 0.100 2.00 0.00 58.92811 0.000000 0.000000 1 0.000000 0.000000 58.92811 * 1 GSS
0.100 0.200 2.05 0.100 75.91997 0.000000 1.980736 2 1.980736 0.000000 73.93924 2 PTS>GSS
> Qv_Dpt [kN]: 58.92811
Qv_Dpt_sub: END — >

ioutd_z_tip_verify: < — BEGIN
< z_tip_verify [m]: 0.100

Qv, GROSS resistances at foundation depth D ——:
————————————————–:

Qv_Dpt_sub: < — BEGIN
< D [m]: 0.100
< B_eq [m]: 2.00

Q_ub_sub: < — BEGIN
< D [m]: 0.100
< D_pt [m]: 0.100
< B_pt [m]: 2.00

Qv_GSS_fun: < — BEGIN
< D [m]: 0.100
< B_eq [m]: 2.00

phi_av_fun: < — BEGIN
< z1 [m]: 0.100
phi_av [rad]: 0.280
> phi_av/deg [deg]: 16.0
phi_av_fun : END — >

is_D_clay [t/f]: F
gamma_sub_av [kN/m^3]: 7.32
phi_rad_av [rad]: 0.280
phi_rad_av/deg [deg]: 16.0
N_gamma [-]: 1.92
N_q [-]: 7.69
d_gamma [-]: 1.00
d_q [-]: 1.02
p0 [kPa]: 0.600
gamma_sub_av*D_gamma*N_gamma*pi*B_eq*B_eq*B_eq/8
[kN]: 44.2
p0*d_q*N_q*pi*B_eq*B_eq/4 [kN]: 14.7
Qv_GSS = gamma_sub_av*D_gamma*N_gamma*pi*B_eq*B_eq*B_eq/8 + p0*d_q*N_q*pi*B_eq*B_eq/4
> Qv_GSS [kN]: 58.92811
Qv_GSS_fun: END — >

phi_lay_deg1 [deg]: 20.0
phi_lay_deg2 [deg]: 20.0
> Q_ub [kN]: 58.92811
> Qv_fmode_pt :GSS
Q_ub_sub: END — >

Rs_pt_fun: < — BEGIN
< D [m]: 0.100
< B_pt [m]: 2.00
Rs_pt [kN]: 0.000000
Rs_pt_fun: END — >

dW_pt_fun: < — BEGIN
< D [m]: 0.100
< B_pt [m]: 2.00
dW_pt = A_pt * T_pt * gamma_sub_av [kN]: 0.000000
dW_pt_fun: END — >

Q_ub_sub: < — BEGIN
< D [m]: 0.100
< D_pt [m]: 0.200
< B_pt [m]: 2.05

Qv_GSS_fun: < — BEGIN
< D [m]: 0.200
< B_eq [m]: 2.05

phi_av_fun: < — BEGIN
< z1 [m]: 0.200
phi_av [rad]: 0.262
> phi_av/deg [deg]: 15.0
phi_av_fun : END — >

is_D_clay [t/f]: F
gamma_sub_av [kN/m^3]: 7.65
phi_rad_av [rad]: 0.262
phi_rad_av/deg [deg]: 15.0
N_gamma [-]: 1.80
N_q [-]: 7.20
d_gamma [-]: 1.00
d_q [-]: 1.03
p0 [kPa]: 1.20
gamma_sub_av*D_gamma*N_gamma*pi*B_eq*B_eq*B_eq/8
[kN]: 46.6
p0*d_q*N_q*pi*B_eq*B_eq/4 [kN]: 29.3
Qv_GSS = gamma_sub_av*D_gamma*N_gamma*pi*B_eq*B_eq*B_eq/8 + p0*d_q*N_q*pi*B_eq*B_eq/4
> Qv_GSS [kN]: 75.91997
Qv_GSS_fun: END — >

phi_lay_deg1 [deg]: 20.0
phi_lay_deg2 [deg]: 15.0
> Q_ub [kN]: 75.91997
> Qv_fmode_pt :GSS
Q_ub_sub: END — >

Rs_pt_fun: < — BEGIN
< D [m]: 0.100
< B_pt [m]: 2.05
Rs_pt [kN]: 0.000000
Rs_pt_fun: END — >

dW_pt_fun: < — BEGIN
< D [m]: 0.100
< B_pt [m]: 2.05
dW_pt = A_pt * T_pt * gamma_sub_av [kN]: 1.980736
dW_pt_fun: END — >

< z_tip_verify [m]: 0.100
D [m]: 0.100
B_eq [m]: 2.00
lay_num (D) [-]: 1
is_D_clay [t/f]: F

Qv_GSS, ISO 19905-1 Equation A.9.3-8,
GSS general shear resistance in SAND [kN]: 58.92811 *
Qv_GSC, ISO 19905-1 Equation A.9.3-7,
GSC general shear resistance in CLAY [kN]: 1000000.
Qv_SQC, ISO 19905-1 Equation A.9.3-10,
SQC squeezing resistance in CLAY [kN]: 1000000.
Qv_D_clay, GSC or SQC in CLAY [kN]: 1000000.
Qub_D, GROSS resistance (GSS, GSC/SQC) [kN]: 58.92811
Qv_fmode, failure mode : 'GSS'

Qv_GSS_fun: < — BEGIN
< D [m]: 0.100
< B_eq [m]: 2.00

phi_av_fun: < — BEGIN
< z1 [m]: 0.100
phi_av [rad]: 0.280
> phi_av/deg [deg]: 16.0
phi_av_fun : END — >

is_D_clay [t/f]: F
gamma_sub_av [kN/m^3]: 7.32
phi_rad_av [rad]: 0.280
phi_rad_av/deg [deg]: 16.0
N_gamma [-]: 1.92
N_q [-]: 7.69
d_gamma [-]: 1.00
d_q [-]: 1.02
p0 [kPa]: 0.600
gamma_sub_av*D_gamma*N_gamma*pi*B_eq*B_eq*B_eq/8
[kN]: 44.2
p0*d_q*N_q*pi*B_eq*B_eq/4 [kN]: 14.7
Qv_GSS = gamma_sub_av*D_gamma*N_gamma*pi*B_eq*B_eq*B_eq/8 + p0*d_q*N_q*pi*B_eq*B_eq/4
> Qv_GSS [kN]: 58.92811
Qv_GSS_fun: END — >

V_L, spudcan GROSS ultimate bearing resistance at foundation depth D ——:

D_B_eq_sub: < — BEGIN
D [m]: 0.100
> B_eq [m]: 2.00
D_B_eq_sub: END — >

H_cav_fun: < — BEGIN
< D [m]: 0.100
< B_eq [m]: 2.00
< I_BF [-]: 1

< D_top_first_SAND_layer [m]: 0.00
H_cav, ISO 19905-1 Eq. 9.3-3 [m]: 0.100
H_cav_fun: END — >

B_S_fun: < — BEGIN
< z_tip [m]: 0.100

D_B_eq_sub: < — BEGIN
D [m]: 0.100
> B_eq [m]: 2.00
D_B_eq_sub: END — >

z1 [m]: 0.100
z2 [m]: 0.100
gamma_sub_av [kN/m^3]: 6.00
V_D [kN]: 0.100E-02
> B_S = gamma_sub_av*V_D [kN]: 0.6000000E-02
B_S_fun: END — >

W_BF_fun: < — BEGIN
< z_tip [m]: 0.100
< I_BF [-]: 1

D_B_eq_sub: < — BEGIN
D [m]: 0.100
> B_eq [m]: 2.00
D_B_eq_sub: END — >

gamma_sub_av [kN/m^3]: 6.00
A [m^2]: 3.14
H_cav [m]: 0.100
V_spud [m^3]: 0.00
V_D [m^3]: 0.100E-02
W_BF = gamma_sub_av [ A (D – H_cav) – (V_spud – V_D ) ]
> W_BF [kN]: 0.6000000E-02
W_BF_fun: END — >

—————————————–
H_CAV, ISO 19905-1 Eq.A.9.3-3,
cavity depth [m bsf]: 0.100
V_SPUD, ISO 19905-1 Fig.A.9.3-6, row1,
spudcan total volume BENEATH BACKFILL [m^3]: 0.00
V_D, ISO 19905-1 Fig.A.9.3-6, row2,
spudcan total volume BELOW MAXIMUM BEARING AREA [m^3]: 0.100E-02
W_BF, ISO 19905-1 Eq.A.9.3-2,
backfill weight due to backflow,
W_BF = gamma [A (D – H_CAV) – (V_SPUD – V_D)] [kN]: 0.6000000E-02

QV_DPT, spudcan NETT resistance at depth D [kN]: 58.92811
B_S, soil buoyancy of spudcan BELOW MAXIMUM BEARING AREA [kN]: 0.6000000E-02
i.e. soil submerged weight displaced by spudcan below D [D is MAX AREA].
W_BF, backfill weight due to backflow [kN]: 0.6000000E-02
> V_L, spudcan GROSS ultimate bearing resistance
ie V_L = QV_DPT – W_BF + B_S [kN]: 58.92811

ioutd_z_tip_verify: END — >

soil_mat_adjust: < — BEGIN
< z_tip [m]: 0.100
< i_sqc [-]: 1
< Qv_fmode [-]: GSS
————————————————————————————————————-
output file: "JOB.O01"
load spread factor #= 1; load spread factor = 4.00 (#rows V_L results= 21)
————————————————————————————————————-
z_tip D B_eq H_cav V_spud V_D B_S W_BF Qv_Dpt V_L
[m] [m] [m] [m] [m^3] [m^3] [kN] [kN] [kN] [kN]
————————————————————————————————————-
0.00 0.00 2.00 0.00 0.00 0.100E-02 0.600E-02 0.6000000E-02 44.89406 44.89406
0.100 0.100 2.00 0.100 0.00 0.100E-02 0.600E-02 0.6000000E-02 58.92811 58.92811
0.200 0.200 2.00 0.200 0.00 0.100E-02 0.765E-02 0.6001074E-02 71.19953 71.20118
0.300 0.300 2.00 0.300 0.00 0.100E-02 0.765E-02 0.6548926E-02 89.65522 89.65632
0.400 0.400 2.00 0.400 0.00 0.100E-02 0.765E-02 0.6826074E-02 108.5994 108.6002
0.500 0.500 2.00 0.500 0.00 0.100E-02 0.765E-02 0.6991504E-02 128.0163 128.0169
0.600 0.600 2.00 0.600 0.00 0.100E-02 0.765E-02 0.7101074E-02 147.8866 147.8871
0.700 0.700 2.00 0.700 0.00 0.100E-02 0.765E-02 0.7178418E-02 168.1883 168.1888
0.800 0.800 2.00 0.800 0.00 0.100E-02 0.765E-02 0.7238574E-02 188.8972 188.8977
0.900 0.900 2.00 0.900 0.00 0.100E-02 0.765E-02 0.7283691E-02 209.9880 209.9884
1.00 1.00 2.00 1.00 0.00 0.100E-02 0.765E-02 0.7320215E-02 231.4344 231.4348
1.10 1.10 2.00 1.10 0.00 0.100E-02 0.765E-02 0.7348145E-02 253.2105 253.2108
1.20 1.20 2.00 1.20 0.00 0.100E-02 0.765E-02 0.7373926E-02 275.2904 275.2907
1.30 1.30 2.00 1.30 0.00 0.100E-02 0.765E-02 0.7397559E-02 297.6494 297.6497
1.40 1.40 2.00 1.40 0.00 0.100E-02 0.765E-02 0.7412598E-02 320.2639 320.2641
1.50 1.50 2.00 1.50 0.00 0.100E-02 0.765E-02 0.7429785E-02 343.1113 343.1115
1.60 1.60 2.00 1.60 0.00 0.100E-02 0.765E-02 0.7444824E-02 366.1709 366.1711
1.70 1.70 2.00 1.70 0.00 0.100E-02 0.765E-02 0.7455566E-02 389.4234 389.4235
1.80 1.80 2.00 1.80 0.00 0.100E-02 0.765E-02 0.7468457E-02 412.8507 412.8509
1.90 1.90 2.00 1.90 0.00 0.100E-02 0.765E-02 0.7477051E-02 436.4368 436.4369
2.00 2.00 2.00 2.00 0.00 0.100E-02 0.765E-02 0.7483496E-02 460.1665 460.1667
————————————————————————————————————-
z_tip D B_eq H_cav V_spud V_D B_S W_BF Qv_Dpt V_L
[m] [m] [m] [m] [m^3] [m^3] [kN] [kN] [kN] [kN]
————————————————————————————————————-
——————————————————————-
output file: "JOB.O01"
load spread factor #= 1; load spread factor = 4.00 (#rows QV_FMODE results= 21)
——————————————————————-
z_tip D B_eq Qv_Dpt V_L Qv_fmode
[m] [m] [m] [kN] [kN]
——————————————————————-
0.00 0.00 2.00 44.89406 44.89406 GSS
0.100 0.100 2.00 58.92811 58.92811 GSS
0.200 0.200 2.00 71.19953 71.20118 GSS
0.300 0.300 2.00 89.65522 89.65632 GSS
0.400 0.400 2.00 108.5994 108.6002 GSS
0.500 0.500 2.00 128.0163 128.0169 GSS
0.600 0.600 2.00 147.8866 147.8871 GSS
0.700 0.700 2.00 168.1883 168.1888 GSS
0.800 0.800 2.00 188.8972 188.8977 GSS
0.900 0.900 2.00 209.9880 209.9884 GSS
1.00 1.00 2.00 231.4344 231.4348 GSS
1.10 1.10 2.00 253.2105 253.2108 GSS
1.20 1.20 2.00 275.2904 275.2907 GSS
1.30 1.30 2.00 297.6494 297.6497 GSS
1.40 1.40 2.00 320.2639 320.2641 GSS
1.50 1.50 2.00 343.1113 343.1115 GSS
1.60 1.60 2.00 366.1709 366.1711 GSS
1.70 1.70 2.00 389.4234 389.4235 GSS
1.80 1.80 2.00 412.8507 412.8509 GSS
1.90 1.90 2.00 436.4368 436.4369 GSS
2.00 2.00 2.00 460.1665 460.1667 GSS
——————————————————————-
z_tip D B_eq Qv_Dpt V_L Qv_fmode
[m] [m] [m] [kN] [kN]
——————————————————————-

out_sp_pen_sub: < — BEGIN
——————————————————————-
load spread factor #= 1; load spread factor = 4.00
(#rows QV_FMODE summary results= 1)
——————————————————————-
from to from to thickness
z_tip z_tip D D T Qv_fmode
[m] [m] [m] [m] [m] [-]
——————————————————————-
0.100 2.00 0.100 2.00 1.90 GSS
——————————————————————-
from to from to thickness
z_tip z_tip D D T Qv_fmode
[m] [m] [m] [m] [m] [-]
——————————————————————-

iso_19905_1: nlines_errors : 0
iso_19905_1: nlines_warnings: 4

WARNING. gmdata: soil layer # 2; PHI < 20 degrees [ISO 19905-1 Table A.9.3-3].
WARNING. spfdat: spudcan volume V_SPUDCAN=822 m^3 is outside typical range [30 – 500].
WARNING. spfdat: NUMSP_BH = 1 [flat-bottomed spudcan].
WARNING. spfdat: maximum spudcan width SP_B_MAX=2.00 m is outside typical range [3 – 20].

z_tip_penetration [m]: 2.00
out_sp_pen_sub: END — >

input file: “JOB.I01”
output file: “JOB.O01”
iso_19905_1: normal program end