7. Output
Terminal output

p r o g r a m I S O _ 1 9 9 0 5 _ 1 w32 version 00.11
———————————— at 06:44:58 on 19-JUL-2024
jackup leg penetration assessment during preload according to ISO 19905-1 (2016)
(c) S.Kay Consultant, Leiderdorp, The Netherlands.
Please read the ISO_19905_1 Users Manual [ref SKA/MAN/001]
and the ISO_19905_1 FAQ File [ref SKA/FAQ/001].

Q23-AS-PWD_SOFF_CPT002_LB_HAKURYU10

out_sp_pen_sub: < — BEGIN
——————————————————————-
load spread factor #= 1; load spread factor = 4.00
(#rows QV_FMODE summary results= 1)
——————————————————————-
from to from to thickness
z_tip z_tip D D T Qv_fmode
[m] [m] [m] [m] [m] [-]
——————————————————————-
0.100 2.00 0.100 2.00 1.90 GSS
——————————————————————-
from to from to thickness
z_tip z_tip D D T Qv_fmode
[m] [m] [m] [m] [m] [-]
——————————————————————-

iso_19905_1: nlines_errors : 0
iso_19905_1: nlines_warnings: 4

WARNING. gmdata: soil layer # 2; PHI < 20 degrees [ISO 19905-1 Table A.9.3-3].
WARNING. spfdat: spudcan volume V_SPUDCAN=822 m^3 is outside typical range [30 – 500].
WARNING. spfdat: NUMSP_BH = 1 [flat-bottomed spudcan].
WARNING. spfdat: maximum spudcan width SP_B_MAX=1.00 m is outside typical range [3 – 20].

z_tip_penetration [m]: 2.00
out_sp_pen_sub: END — >

input file: “JOB.I01”
output file: “JOB.O01”
iso_19905_1: normal program end

Output file contents

p r o g r a m I S O _ 1 9 9 0 5 _ 1 w32 version 00.11
———————————— at 06:44:58 on 19-JUL-2024
jackup leg penetration assessment during preload according to ISO 19905-1 (2016)
(c) S.Kay Consultant, Leiderdorp, The Netherlands.
Please read the ISO_19905_1 Users Manual [ref SKA/MAN/001]
and the ISO_19905_1 FAQ File [ref SKA/FAQ/001].

pidata:

gmdata:

spfdat:

ssidat:

resdat:

s__out:

spudcan_mat_X_sub: sp_H sp_B
> [m] [m]
1.00 0.00
0.00 0.314E+04
spudcan_mat_X_sub: END — >

D_B_eq_sub: < — BEGIN
D [m]: 0.400
> B_eq [m]: 1.00
D_B_eq_sub: END — >

sp_beta_fun: < — BEGIN
sp_beta [rad]: 3.13
> sp_beta/deg [deg]: 179.
sp_beta_fun: END — >

gamma_sub_av [kN/m^3]: 6.00
A [m^2]: 0.785
H_cav [m]: 0.400
V_spud [m^3]: 0.00
V_D [m^3]: 0.100E-02
W_BF = gamma_sub_av [ A (D – H_cav) – (V_spud – V_D ) ]
> W_BF [kN]: 0.6000000E-02
W_BF_fun: END — >

Qv_Dpt_sub: < — BEGIN
< D [m]: 0.400
< B_eq [m]: 1.00

Q_ub_sub: < — BEGIN
< D [m]: 0.400
< D_pt [m]: 0.400
< B_pt [m]: 1.00

Qv_GSS_fun: < — BEGIN
< D [m]: 0.400
< B_eq [m]: 1.00

phi_av_fun: < — BEGIN
< z1 [m]: 0.400
phi_av [rad]: 0.349
> phi_av/deg [deg]: 20.0
phi_av_fun : END — >

is_D_clay [t/f]: F
gamma_sub_av [kN/m^3]: 6.00
phi_rad_av [rad]: 0.349
phi_rad_av/deg [deg]: 20.0
N_gamma [-]: 2.40
N_q [-]: 9.60
d_gamma [-]: 1.00
d_q [-]: 1.12
p0 [kPa]: 2.40
gamma_sub_av*D_gamma*N_gamma*pi*B_eq*B_eq*B_eq/8
[kN]: 5.65
p0*d_q*N_q*pi*B_eq*B_eq/4 [kN]: 20.3
Qv_GSS = gamma_sub_av*D_gamma*N_gamma*pi*B_eq*B_eq*B_eq/8 + p0*d_q*N_q*pi*B_eq*B_eq/4
> Qv_GSS [kN]: 25.92042
Qv_GSS_fun: END — >

phi_lay_deg1 [deg]: 20.0
phi_lay_deg2 [deg]: 20.0
> Q_ub [kN]: 25.92042
> Qv_fmode_pt :GSS
Q_ub_sub: END — >

Rs_pt_fun: < — BEGIN
< D [m]: 0.400
< B_pt [m]: 1.00
Rs_pt [kN]: 0.000000
Rs_pt_fun: END — >

dW_pt_fun: < — BEGIN
< D [m]: 0.400
< B_pt [m]: 1.00
dW_pt = A_pt * T_pt * gamma_sub_av [kN]: 0.000000
dW_pt_fun: END — >

Q_ub_sub: < — BEGIN
< D [m]: 0.400
< D_pt [m]: 1.00
< B_pt [m]: 1.30

Qv_GSS_fun: < — BEGIN
< D [m]: 1.00
< B_eq [m]: 1.30

phi_av_fun: < — BEGIN
< z1 [m]: 1.00
phi_av [rad]: 0.262
> phi_av/deg [deg]: 15.0
phi_av_fun : END — >

is_D_clay [t/f]: F
gamma_sub_av [kN/m^3]: 7.65
phi_rad_av [rad]: 0.262
phi_rad_av/deg [deg]: 15.0
N_gamma [-]: 1.80
N_q [-]: 7.20
d_gamma [-]: 1.00
d_q [-]: 1.19
p0 [kPa]: 6.00
gamma_sub_av*D_gamma*N_gamma*pi*B_eq*B_eq*B_eq/8
[kN]: 11.9
p0*d_q*N_q*pi*B_eq*B_eq/4 [kN]: 68.4
Qv_GSS = gamma_sub_av*D_gamma*N_gamma*pi*B_eq*B_eq*B_eq/8 + p0*d_q*N_q*pi*B_eq*B_eq/4
> Qv_GSS [kN]: 80.28918
Qv_GSS_fun: END — >

phi_lay_deg1 [deg]: 20.0
phi_lay_deg2 [deg]: 15.0
> Q_ub [kN]: 80.28918
> Qv_fmode_pt :GSS
Q_ub_sub: END — >

Rs_pt_fun: < — BEGIN
< D [m]: 0.400
< B_pt [m]: 1.30
Rs_pt [kN]: 0.000000
Rs_pt_fun: END — >

dW_pt_fun: < — BEGIN
< D [m]: 0.400
< B_pt [m]: 1.30
dW_pt = A_pt * T_pt * gamma_sub_av [kN]: 4.779218
dW_pt_fun: END — >

D D_pt B_pt T_pt Q_ub Rs_pt dW_pt lay_D_pt sum_W_pt sum_Rs_pt Qv_D . Qv_fmode
[m] [m] [m] [m] [kN] [kN] [kN] [-] [kN] [kN] [kN]
0.400 0.400 1.00 0.00 25.92042 0.000000 0.000000 1 0.000000 0.000000 25.92042 * 1 GSS
0.400 1.00 1.30 0.600 80.28918 0.000000 4.779218 2 4.779218 0.000000 75.50996 2 PTS>GSS
> Qv_Dpt [kN]: 25.92042
Qv_Dpt_sub: END — >

ioutd_z_tip_verify: < — BEGIN
< z_tip_verify [m]: 0.400

Qv, GROSS resistances at foundation depth D ——:
————————————————–:

Qv_Dpt_sub: < — BEGIN
< D [m]: 0.400
< B_eq [m]: 1.00

Q_ub_sub: < — BEGIN
< D [m]: 0.400
< D_pt [m]: 0.400
< B_pt [m]: 1.00

Qv_GSS_fun: < — BEGIN
< D [m]: 0.400
< B_eq [m]: 1.00

phi_av_fun: < — BEGIN
< z1 [m]: 0.400
phi_av [rad]: 0.349
> phi_av/deg [deg]: 20.0
phi_av_fun : END — >

is_D_clay [t/f]: F
gamma_sub_av [kN/m^3]: 6.00
phi_rad_av [rad]: 0.349
phi_rad_av/deg [deg]: 20.0
N_gamma [-]: 2.40
N_q [-]: 9.60
d_gamma [-]: 1.00
d_q [-]: 1.12
p0 [kPa]: 2.40
gamma_sub_av*D_gamma*N_gamma*pi*B_eq*B_eq*B_eq/8
[kN]: 5.65
p0*d_q*N_q*pi*B_eq*B_eq/4 [kN]: 20.3
Qv_GSS = gamma_sub_av*D_gamma*N_gamma*pi*B_eq*B_eq*B_eq/8 + p0*d_q*N_q*pi*B_eq*B_eq/4
> Qv_GSS [kN]: 25.92042
Qv_GSS_fun: END — >

phi_lay_deg1 [deg]: 20.0
phi_lay_deg2 [deg]: 20.0
> Q_ub [kN]: 25.92042
> Qv_fmode_pt :GSS
Q_ub_sub: END — >

Rs_pt_fun: < — BEGIN
< D [m]: 0.400
< B_pt [m]: 1.00
Rs_pt [kN]: 0.000000
Rs_pt_fun: END — >

dW_pt_fun: < — BEGIN
< D [m]: 0.400
< B_pt [m]: 1.00
dW_pt = A_pt * T_pt * gamma_sub_av [kN]: 0.000000
dW_pt_fun: END — >

Q_ub_sub: < — BEGIN
< D [m]: 0.400
< D_pt [m]: 1.00
< B_pt [m]: 1.30

Qv_GSS_fun: < — BEGIN
< D [m]: 1.00
< B_eq [m]: 1.30

phi_av_fun: < — BEGIN
< z1 [m]: 1.00
phi_av [rad]: 0.262
> phi_av/deg [deg]: 15.0
phi_av_fun : END — >

is_D_clay [t/f]: F
gamma_sub_av [kN/m^3]: 7.65
phi_rad_av [rad]: 0.262
phi_rad_av/deg [deg]: 15.0
N_gamma [-]: 1.80
N_q [-]: 7.20
d_gamma [-]: 1.00
d_q [-]: 1.19
p0 [kPa]: 6.00
gamma_sub_av*D_gamma*N_gamma*pi*B_eq*B_eq*B_eq/8
[kN]: 11.9
p0*d_q*N_q*pi*B_eq*B_eq/4 [kN]: 68.4
Qv_GSS = gamma_sub_av*D_gamma*N_gamma*pi*B_eq*B_eq*B_eq/8 + p0*d_q*N_q*pi*B_eq*B_eq/4
> Qv_GSS [kN]: 80.28918
Qv_GSS_fun: END — >

phi_lay_deg1 [deg]: 20.0
phi_lay_deg2 [deg]: 15.0
> Q_ub [kN]: 80.28918
> Qv_fmode_pt :GSS
Q_ub_sub: END — >

Rs_pt_fun: < — BEGIN
< D [m]: 0.400
< B_pt [m]: 1.30
Rs_pt [kN]: 0.000000
Rs_pt_fun: END — >

dW_pt_fun: < — BEGIN
< D [m]: 0.400
< B_pt [m]: 1.30
dW_pt = A_pt * T_pt * gamma_sub_av [kN]: 4.779218
dW_pt_fun: END — >

< z_tip_verify [m]: 0.400
D [m]: 0.400
B_eq [m]: 1.00
lay_num (D) [-]: 1
is_D_clay [t/f]: F

Qv_GSS, ISO 19905-1 Equation A.9.3-8,
GSS general shear resistance in SAND [kN]: 25.92042 *
Qv_GSC, ISO 19905-1 Equation A.9.3-7,
GSC general shear resistance in CLAY [kN]: 1000000.
Qv_SQC, ISO 19905-1 Equation A.9.3-10,
SQC squeezing resistance in CLAY [kN]: 1000000.
Qv_D_clay, GSC or SQC in CLAY [kN]: 1000000.
Qub_D, GROSS resistance (GSS, GSC/SQC) [kN]: 25.92042
Qv_fmode, failure mode : 'GSS'

Qv_GSS_fun: < — BEGIN
< D [m]: 0.400
< B_eq [m]: 1.00

phi_av_fun: < — BEGIN
< z1 [m]: 0.400
phi_av [rad]: 0.349
> phi_av/deg [deg]: 20.0
phi_av_fun : END — >

is_D_clay [t/f]: F
gamma_sub_av [kN/m^3]: 6.00
phi_rad_av [rad]: 0.349
phi_rad_av/deg [deg]: 20.0
N_gamma [-]: 2.40
N_q [-]: 9.60
d_gamma [-]: 1.00
d_q [-]: 1.12
p0 [kPa]: 2.40
gamma_sub_av*D_gamma*N_gamma*pi*B_eq*B_eq*B_eq/8
[kN]: 5.65
p0*d_q*N_q*pi*B_eq*B_eq/4 [kN]: 20.3
Qv_GSS = gamma_sub_av*D_gamma*N_gamma*pi*B_eq*B_eq*B_eq/8 + p0*d_q*N_q*pi*B_eq*B_eq/4
> Qv_GSS [kN]: 25.92042
Qv_GSS_fun: END — >

V_L, spudcan GROSS ultimate bearing resistance at foundation depth D ——:

D_B_eq_sub: < — BEGIN
D [m]: 0.400
> B_eq [m]: 1.00
D_B_eq_sub: END — >

H_cav_fun: < — BEGIN
< D [m]: 0.400
< B_eq [m]: 1.00
< I_BF [-]: 1

< D_top_first_SAND_layer [m]: 0.00
H_cav, ISO 19905-1 Eq. 9.3-3 [m]: 0.400
H_cav_fun: END — >

B_S_fun: < — BEGIN
< z_tip [m]: 0.400

D_B_eq_sub: < — BEGIN
D [m]: 0.400
> B_eq [m]: 1.00
D_B_eq_sub: END — >

z1 [m]: 0.400
z2 [m]: 0.400
gamma_sub_av [kN/m^3]: 6.00
V_D [kN]: 0.100E-02
> B_S = gamma_sub_av*V_D [kN]: 0.6000000E-02
B_S_fun: END — >

W_BF_fun: < — BEGIN
< z_tip [m]: 0.400
< I_BF [-]: 1

D_B_eq_sub: < — BEGIN
D [m]: 0.400
> B_eq [m]: 1.00
D_B_eq_sub: END — >

gamma_sub_av [kN/m^3]: 6.00
A [m^2]: 0.785
H_cav [m]: 0.400
V_spud [m^3]: 0.00
V_D [m^3]: 0.100E-02
W_BF = gamma_sub_av [ A (D – H_cav) – (V_spud – V_D ) ]
> W_BF [kN]: 0.6000000E-02
W_BF_fun: END — >

—————————————–
H_CAV, ISO 19905-1 Eq.A.9.3-3,
cavity depth [m bsf]: 0.400
V_SPUD, ISO 19905-1 Fig.A.9.3-6, row1,
spudcan total volume BENEATH BACKFILL [m^3]: 0.00
V_D, ISO 19905-1 Fig.A.9.3-6, row2,
spudcan total volume BELOW MAXIMUM BEARING AREA [m^3]: 0.100E-02
W_BF, ISO 19905-1 Eq.A.9.3-2,
backfill weight due to backflow,
W_BF = gamma [A (D – H_CAV) – (V_SPUD – V_D)] [kN]: 0.6000000E-02

QV_DPT, spudcan NETT resistance at depth D [kN]: 25.92042
B_S, soil buoyancy of spudcan BELOW MAXIMUM BEARING AREA [kN]: 0.6000000E-02
i.e. soil submerged weight displaced by spudcan below D [D is MAX AREA].
W_BF, backfill weight due to backflow [kN]: 0.6000000E-02
> V_L, spudcan GROSS ultimate bearing resistance
ie V_L = QV_DPT – W_BF + B_S [kN]: 25.92042

ioutd_z_tip_verify: END — >

soil_mat_adjust: < — BEGIN
< z_tip [m]: 0.400
< i_sqc [-]: 1
< Qv_fmode [-]: GSS
————————————————————————————————————-
output file: "JOB.O01"
load spread factor #= 1; load spread factor = 4.00 (#rows V_L results= 21)
————————————————————————————————————-
z_tip D B_eq H_cav V_spud V_D B_S W_BF Qv_Dpt V_L
[m] [m] [m] [m] [m^3] [m^3] [kN] [kN] [kN] [kN]
————————————————————————————————————-
0.00 0.00 1.00 0.00 0.00 0.100E-02 0.600E-02 0.6000000E-02 5.654867 5.654867
0.100 0.100 1.00 0.100 0.00 0.100E-02 0.600E-02 0.6000000E-02 10.32086 10.32086
0.200 0.200 1.00 0.200 0.00 0.100E-02 0.600E-02 0.6000000E-02 15.26551 15.26551
0.300 0.300 1.00 0.300 0.00 0.100E-02 0.600E-02 0.6000000E-02 20.47315 20.47315
0.400 0.400 1.00 0.400 0.00 0.100E-02 0.600E-02 0.6000000E-02 25.92042 25.92042
0.500 0.500 1.00 0.500 0.00 0.100E-02 0.600E-02 0.6000000E-02 31.57949 31.57949
0.600 0.600 1.00 0.600 0.00 0.100E-02 0.600E-02 0.6000000E-02 37.42114 37.42114
0.700 0.700 1.00 0.700 0.00 0.100E-02 0.600E-02 0.6000000E-02 43.41718 43.41718
0.800 0.800 1.00 0.800 0.00 0.100E-02 0.600E-02 0.6000000E-02 47.37293 47.37293
0.900 0.900 1.00 0.900 0.00 0.100E-02 0.600E-02 0.6000000E-02 48.07040 48.07040
1.00 1.00 1.00 1.00 0.00 0.100E-02 0.765E-02 0.6001074E-02 47.18169 47.18334
1.10 1.10 1.00 1.10 0.00 0.100E-02 0.765E-02 0.6149316E-02 53.04380 53.04530
1.20 1.20 1.00 1.20 0.00 0.100E-02 0.765E-02 0.6276074E-02 58.97061 58.97198
1.30 1.30 1.00 1.30 0.00 0.100E-02 0.765E-02 0.6381348E-02 64.95143 64.95270
1.40 1.40 1.00 1.40 0.00 0.100E-02 0.765E-02 0.6471582E-02 70.97745 70.97863
1.50 1.50 1.00 1.50 0.00 0.100E-02 0.765E-02 0.6548926E-02 77.04143 77.04253
1.60 1.60 1.00 1.60 0.00 0.100E-02 0.765E-02 0.6619824E-02 83.13741 83.13844
1.70 1.70 1.00 1.70 0.00 0.100E-02 0.765E-02 0.6677832E-02 89.26050 89.26147
1.80 1.80 1.00 1.80 0.00 0.100E-02 0.765E-02 0.6733691E-02 95.40665 95.40757
1.90 1.90 1.00 1.90 0.00 0.100E-02 0.765E-02 0.6780957E-02 101.5725 101.5734
2.00 2.00 1.00 2.00 0.00 0.100E-02 0.765E-02 0.6826074E-02 107.7553 107.7561
————————————————————————————————————-
z_tip D B_eq H_cav V_spud V_D B_S W_BF Qv_Dpt V_L
[m] [m] [m] [m] [m^3] [m^3] [kN] [kN] [kN] [kN]
————————————————————————————————————-
——————————————————————-
output file: "JOB.O01"
load spread factor #= 1; load spread factor = 4.00 (#rows QV_FMODE results= 21)
——————————————————————-
z_tip D B_eq Qv_Dpt V_L Qv_fmode
[m] [m] [m] [kN] [kN]
——————————————————————-
0.00 0.00 1.00 5.654867 5.654867 GSS
0.100 0.100 1.00 10.32086 10.32086 GSS
0.200 0.200 1.00 15.26551 15.26551 GSS
0.300 0.300 1.00 20.47315 20.47315 GSS
0.400 0.400 1.00 25.92042 25.92042 GSS
0.500 0.500 1.00 31.57949 31.57949 GSS
0.600 0.600 1.00 37.42114 37.42114 GSS
0.700 0.700 1.00 43.41718 43.41718 GSS
0.800 0.800 1.00 47.37293 47.37293 GSS
0.900 0.900 1.00 48.07040 48.07040 GSS
1.00 1.00 1.00 47.18169 47.18334 GSS
1.10 1.10 1.00 53.04380 53.04530 GSS
1.20 1.20 1.00 58.97061 58.97198 GSS
1.30 1.30 1.00 64.95143 64.95270 GSS
1.40 1.40 1.00 70.97745 70.97863 GSS
1.50 1.50 1.00 77.04143 77.04253 GSS
1.60 1.60 1.00 83.13741 83.13844 GSS
1.70 1.70 1.00 89.26050 89.26147 GSS
1.80 1.80 1.00 95.40665 95.40757 GSS
1.90 1.90 1.00 101.5725 101.5734 GSS
2.00 2.00 1.00 107.7553 107.7561 GSS
——————————————————————-
z_tip D B_eq Qv_Dpt V_L Qv_fmode
[m] [m] [m] [kN] [kN]
——————————————————————-

out_sp_pen_sub: < — BEGIN
——————————————————————-
load spread factor #= 1; load spread factor = 4.00
(#rows QV_FMODE summary results= 1)
——————————————————————-
from to from to thickness
z_tip z_tip D D T Qv_fmode
[m] [m] [m] [m] [m] [-]
——————————————————————-
0.100 2.00 0.100 2.00 1.90 GSS
——————————————————————-
from to from to thickness
z_tip z_tip D D T Qv_fmode
[m] [m] [m] [m] [m] [-]
——————————————————————-

iso_19905_1: nlines_errors : 0
iso_19905_1: nlines_warnings: 4

WARNING. gmdata: soil layer # 2; PHI < 20 degrees [ISO 19905-1 Table A.9.3-3].
WARNING. spfdat: spudcan volume V_SPUDCAN=822 m^3 is outside typical range [30 – 500].
WARNING. spfdat: NUMSP_BH = 1 [flat-bottomed spudcan].
WARNING. spfdat: maximum spudcan width SP_B_MAX=1.00 m is outside typical range [3 – 20].

z_tip_penetration [m]: 2.00
out_sp_pen_sub: END — >

input file: “JOB.I01”
output file: “JOB.O01”
iso_19905_1: normal program end